

Compiler Design

For

Computer Science

&

Information Technology

By

www.thegateacademy.com

✆080-40611000

http://www.thegateacademy.com/

Syllabus

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com

Syllabus for Compiler Design

 Lexical Analysis, Parsing, Syntax-Directed Translation, Runtime Environments, Intermediate Code

Generation.

Previous Year GATE Papers and Analysis

GATE Papers with answer key

Subject wise Weightage Analysis

thegateacademy.com/gate-papers

thegateacademy.com/gate-syllabus

 Contents

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com i

CCoonntteennttss

 Chapters Page No.

#1. Introduction to Compilers

 Compilers

 Analysis of the Source Program

 The Phases of a Compiler

 Lexical Analyzer

 Specification of Tokens

#2. Parsing

 Syntax Analysis

 The Role of the Parser

 Context-Free Grammar

 Writing a Grammar

 Top-Down Parsing

 Bottom-Up Parsing

 Operator-Precedence Parsing

 LR Parsers

 Parser Generators

#3. Syntax Directed Translation

 Syntax Directed Translation

 Syntax Directed Definitions (SD-Definitions)

 Construction of Syntax Trees

 Bottom-Up Evaluation of S-Attributed Definition

 L-Attributed Definitions

 Top-Down Translation

 Bottom-Up Evaluation of Inherited Attributes

 Run Time Environment

#4. Intermediate Code Generation

 Intermediate Code Generation

 Intermediate Language

 Issues in the Design of a Code Generator

 Target Machine

 Code Optimization

 The Principal Sources of Optimization

Reference Books

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 1

“The will to do springs from the

knowledge that we can do."

…. James Allen

Introduction to Compilers

Learning Objectives
After reading this chapter, you will know:

1. Compiler

2. Analysis of the Source Program

3. The Phases of a Compiler

4. Lexical Analyzer

5. Specification of Tokens

Compiler
A compiler is a program that reads a program written in one language – the source language – and

translates it into an equivalent program in another language – the target language (see Fig. Shows

below. As an important part of this translation process, the compiler reports to its user the presence

of errors in the source program.

A Compiler

Compilers are sometimes classified as single pass multi-pass, load and go, debugging or optimising

depending on how they have been constructed or on what function they are supposed to perform.

Despite this apparent complexity, the basic tasks that any compiler must perform are essentially the

same. By understanding these tasks, we can construct compilers for a variety of source languages

and target machines using the same basic techniques.

The Analysis-Synthesis Model of Compilation

There are two parts of compilation: Analysis and Synthesis. The analysis part breaks up the source

program into constituent pieces and creates an intermediate representation of the source program.

The synthesis part constructs the desired target program from the intermediate representation. Out

of the two parts, synthesis requires the most specialized techniques.

Compiler Source

Program
Target

Program

Error

Messages

C
H

A
P

T
E

R

1

1

 Introduction to Compilers

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 2

During analysis, the operations implied by the source program are determined and recorded in a

hierarchical structure called as tree. Often, a special kind of tree called as Syntax tree is used, in

which each node represents an operation and the children of node represent the argument of the

operation. For example, a syntax tree for an assignment statement is shown in below.

Syntax Tree for Position: = Initial + Rate 60.

The Context of a Compiler

In addition to a compiler, several other programs may be required to create an executable target

program. A source program may be divided into modules stored in separate files. The task of

collecting the source program is sometimes entrusted to a distinct program, called as Preprocessor.

The preprocessor may also expand shorthands, called macros, into source language statements.

Following below figure shows a typical “compilation.” The target program created by the compiler

may require further processing before it can be run. The compiler in below figure creates assembly

code that is translated by an assembler into machine code and then linked together with some

library routines into the code that actually runs on the machine.

A Language-Processing System

Skeletal Source Program

Preprocessor

Source Program

Compiler

Target Assembly Program

Assembler

Relocatable Machine Code

Loader/Link Editor

Absolute Machine Code

Library,

Relocatable Object File

position

initial

rate

 Introduction to Compilers

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 3

Analysis of the Source Program
1. Linear or Lexical analysis, in which stream of characters making up the source program is read

from left-to-right and grouped into tokens that are sequences of characters having a collective

meaning.

2. Hierarchical or Syntax analysis, in which characters or tokens are grouped hierarchically into

nested collections with collective meanings.

3. Semantic analysis, in which certain checks are performed to ensure that the components of a

program fit together meaningfully.

Lexical Analysis

A token is a string of characters, categorized according to the rules as a symbol (e.g. IDENTIFIER,

NUMBER, COMMA, etc.). The process of forming tokens from an input stream of characters is called

tokenization and the lexer categorizes them according to symbol type. A token can look like anything

that is useful for processing an input text stream or text file.

A lexical analyzer generally does nothing with combinations of tokens, a task left for a parser. For

example, a typical lexical analyzer recognizes parenthesis as tokens, but does nothing to ensure that

each '(' is matched with a ')'.

In a compiler, linear analysis is called lexical analysis or scanning. For example, in lexical analysis

the characters in the assignment statement

Position: = initial + rate 60

would be grouped into the following tokens:

1. The identifier position.

2. The assignment symbol : =

3. The identifier initial.

4. The plus sign +

5. The identifier .

6. The multiplication sign

7. The number 60

The blanks separating the characters of these tokens would normally be eliminated during

lexical analysis.

Syntax Analysis

Hierarchical analysis is called parsing or syntax analysis. It involves grouping the tokens of the

source program into grammatical phrases that are used by the compiler to synthesize output.

Usually, the grammatical phrases of the source program are represented by a parse tree such as the

one shown in figure below.

http://en.wikipedia.org/wiki/Parser

 Introduction to Compilers

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 4

Parse Tree for Position: = Initial + Rate 60

In the expression initial + rate 60, the phrase rate 60 is a logical unit because the usual

conventions of arithmetic expressions tell us that multiplication is performed before addition.

Because the expression initial + rate is followed by a it is not grouped into a single phrase by

itself in Fig. above.

The hierarchical structure of a program is usually expressed by recursive rules. For example, we

might have the following rules as part of the definition of expressions:

1. Any identifier is an expression.

2. Any number is an expression.

3. If expression and expression are expressions, then so are

expression expression

expression expression

(expression)

Rules (1) and (2) are non-recursive basic rules, while (3) defines expressions in terms of

operators applied to other expressions. Thus, by rule (1), initial and rate are expressions. By

rule (2), 60 is an expression, while by rule (3), we can first infer that rate 60 is an expression

and finally that initial + rate 60 is an expression.

Assignment

Statement

Identifier

Position

Expression

 Expression

Identifier

Initial

Expression

 Expression
Expression

60

Number
Identifier

Rate

 Introduction to Compilers

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 5

Semantic Analysis Inserts a Conversion from Integer to Real

The parse tree for position describes the syntactic structure of the input. A more common internal

representation of this syntactic structure is given by the syntax in Fig. above (a). A syntax tree is a

compressed representation of the parse tree in which the operators appear as the interior nodes,

and the operands of an operator are the children of the node for that operator.

Semantic Analysis

The semantic analysis phase checks the source program for semantic errors and gathers type

information for the subsequent code-generation phase. It uses the hierarchical structure determined

by the syntax-analysis phase to identify the operators and operands of expressions and statements.

An important component of semantic analysis is type checking.

Here the compiler checks that each operator has operands that are permitted by the source

language specification. For example, many programming language definitions require a compiler to

report an error every time a real number is used to index an array. However, the language

specification may permit some operand corrections, for example, when binary arithmetic operator

is applied to an integer and real. In this case, the compiler may need to convert the integer to a real.

The Phases of a Compiler
Conceptually, a compiler operates in phases, each of which transforms the source program from one

representation to another. A typical decomposition of a compiler is shown in Fig. below. In practice,

some of the phases may be grouped together, and the intermediate representations between the

grouped phases need not be explicitly constructed.

Position

Initial

Rate

int to real

Position

Initial

Rate

(a) (b)

 Introduction to Compilers

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 6

Phases of a Compiler

The first three forming the bulk of the analysis portion of a compiler, were introduced in the last

section. Two other activities, symbol-table management and error handling, are shown interacting

with the six phases of compilation lexical analysis, syntax analysis, semantic analysis, intermediate

code generation, code optimization, and code generation. Informally, we shall also call the symbol-

table manager and the error handler “phases.”

The 6 phases divided into 2 Groups

1. Front End: Depends on stream of tokens and parse tree

2. Back End: Dependent on Target, Independent of source code

Symbol-Table Management

A symbol table is a data structure containing a record for each identifier, with fields for the

attributes of the identifier. The data structure allows us to find the record for each identifier quickly

and to store or retrieve data from that record quickly.

Symbol table is a Data Structure in a Compiler used for Managing information about variables &

their attributes.

Error Detection and Reporting

Each phase can encounter errors. However, after detecting an error, a phase must somehow deal

with that error, so that compilation can proceed, allowing further errors in the source program to be

detected. A compiler that stops when it finds the first error is not as helpful as it could be.

The syntax and semantic analysis phases usually handle a large fraction of the errors detectable by

the compiler. The lexical phase can detect errors where the characters remaining in the input do not

form any token of the language. Errors where the token stream violates the structure rules (syntax)

of the language are determined by the syntax analysis phase.

Lexical Analyzer

Source Program

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Code Optimizer

Target Code Generator

Symbol Table

Manager
Error

Handler

Target Program

 Introduction to Compilers

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 7

The Analysis Phases

As translation progresses, the compiler’s internal representation of the source program changes. We

illustrate these representations by considering the translation of the statement.

Position: = initial + rate 60 -------------- (1.1)

Lexical Analyzer

1. The lexical analysis phase reads the characters in the source program and groups them into a

stream of tokens in which each token represents a logically cohesive sequence of characters,

such as an identifier, a keyword (if, while, etc.), a punctuation character, or a multi-character

operator like : = .The character sequence forming a token is called the lexeme for the token.

Certain tokens will be augmented by a “lexical value”. For example, when an identifier like

rate is found, the lexical analyzer not only generates a token, say id, but also enters the lexeme

rate into the symbol table, if it is not already there. The lexical value associated with this

occurrence of id points to the symbol-table entry for rate.

In this section, we shall use id1, id2, and id3 for position, initial, and rate, respectively, to

emphasize that the internal representation of an identifier is different from the character

sequence forming the identifier. The representation of assignment statement (1.1) after

lexical analysis is therefore suggested by:

id1 = id2 + id3 60 -------------- (1.2)

Syntax Analysis Phase

1. The syntax Analysis Phase: The syntax analysis phase imposes a hierarchical structure on the

token stream, shown below

2. The Semantic Analysis Phase: During the semantic analysis, it is considered that in our

example all identifiers have been declared to be reals and that 60 by itself is assumed to be an

integer. Type checking of syntax tree reveals that is applied to a real rate and an integer, 60.

The general approach is to convert the integer into a real. This has been achieved by creating

an integer into a real

id

id

id int to real

id

id

id

	1
	2
	3
	4
	5
	6
	7
	8

